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Abstract

Finite automata on infinite words (ω-automata) proved to be a powerful weapon for mod-
eling and reasoning infinite behaviors of reactive systems. Complementation of ω-automata is
crucial in many of these applications. But the problem is non-trivial; even after extensive study
during the past two decades, we still have an important type of ω-automata, namely Streett
automata, for which the gap between the current best lower bound 2Ω(n lgnk) and upper bound
2Ω(nk lgnk) is substantial, for the Streett index size k can be exponential in the number of states
n. In [4] we showed a construction for complementing Streett automata with the upper bound

2O(n lgn+nk lg k) for k = O(n) and 2O(n2 lgn) for k = ω(n). In this paper we establish a matching

lower bound 2Ω(n lgn+nk lg k) for k = O(n) and 2Ω(n2 lgn) for k = ω(n), and therefore showing
that the construction is asymptotically optimal with respect to the 2Θ(·) notation.

1 Introduction

Complementation is a fundamental notion in automata theory. Given an automaton A, the com-
plementation problem asks to find an automaton B that accepts exactly all words that A does not
accept. Complementation connects automata theory with mathematical logic due to the natural
correspondence between language complementation and logical negation, and hence plays a pivotal
role in solving many decision and definability problems in mathematical logic.

A fundamental connection between automata theory and the monadic second order logics
was demonstrated by Büchi [1], who started the theory of finite automata on infinite words (ω-
automata) [2]. The original ω-automata are now referred to as Büchi automata and Büchi comple-
mentation was a key to establish that the class of ω-regular languages (sets of ω-words generated
by product ◦, union ∪, star ∗ and limit ω) is closed under complementation [2].

Büchi’s discovery also has profound repercussions in applied logics. Since the ’80s, with increas-
ing demand of reasoning infinite computations of reactive and concurrent systems, ω-automata
have been acknowledged as unifying representation for programs as well as for specifications [26].
Complementation of ω-automata is crucial in many of these applications.

But complementation of ω-automata is non-trivial. Only after extensive studies in the past
two decades [23, 16, 18, 6, 27, 20] (also see survey [25]), do we have a good understanding of
the complexity of Büchi complementation. But a question about a very important type of ω-
automata remains unanswered, namely the complexity of Streett complementation, where the gap
between the current lower bound and upper bound is substantial. Streett automata are ones of a
kind, because Streett acceptance conditions naturally encode strong fairness that infinitely many
requests are responded infinitely often, a necessary requirement for meaningful computations [5, 7].
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Related Work. Obtaining nontrivial lower bounds has been difficult. The first nontrivial lower
bound for Büchi complementation is n! ≈ (0.36n)n, obtained by Michel [16, 15]. In 2006, combining
ranking with full automaton technique, Yan improved the lower bound of Büchi complementation
to Ω(L(n)) [27], which now is matched tightly by the upper bound O(n2(L(n)) [20], where L(n) ≈
(0.76n)n. Also established in [27] was a (Ω(nk))n = 2Ω(n lgnk) tight lower bound (where k is the
number of Büchi indices) for generalized Büchi complementation, which also applies to Streett
complementation because generalized Büchi automata are a subclass of Streett automata. In [3],
we proved a tight lower bound 2Ω(nk lgn) for Rabin complementation (where Rabin index size k

can be as large as 2n−ǫ for any arbitrary but fixed ǫ > 0). Several constructions for Streett
complementation exist [24, 9, 19, 14, 17], but all involve at least 2O(nk lgnk) state blow-up, which
is significantly higher than the current best lower bound 2Ω(n lgnk), since the Streett index size
k can reach 2n. Determining the complexity of Streett complementation has been posed as an
open problem since the late ’80s [24, 14, 27, 25]. In [4] we showed a construction for Streett
complementation with the upper bound 2O(n lgn+nk lg k) for k = O(n) and 2O(n2 lgn) for k = ω(n).
In this paper we establish a matching lower bound 2Ω(n lgn+nk lg k) for k = O(n) and 2Ω(n2 lgn) for
k = ω(n), and therefore showing that the construction in [4] is essentially optimal at the granularity
of 2Θ(·). This lower bound is obtained by applying two techniques: fooling set and full automaton.

Fooling Set. The fooling set technique is a classic way of obtaining lower bounds on nonde-
terministic finite automata on finite words (NFA). Let Σ be an alphabet and L ⊆ Σ∗ a regular
language. A set of pairs P = {(xi, yi) | xi, yi ∈ Σ∗, 1 ≤ i ≤ n} is called a fooling set for L , if
xiyi ∈ L for 1 ≤ i ≤ n and xiyj 6∈ L for 1 ≤ i, j ≤ n and i 6= j. If L has a fooling set P , then
any NFA accepting L has at least |P | states [8]. The purpose of a fooling set is to identify runs
with dual properties (called fooling runs): fragments of accepting runs of L , when pieced together
in certain ways, induce non-accepting runs. By an argument in the style of Pumping Lemma, a
small automaton would not be able to distinguish how it arrives at a state, and hence it cannot
differentiate between some accepting runs and some non-accepting ones.

In the setting of ω-automata, a similar technique exists, which we refer to as Michel’s scheme [16].
A set P = {xi ∈ Σ∗ | 1 ≤ i ≤ n} is called a fooling set for L , if (xi)

ω ∈ L for 1 ≤ i ≤ n and
((xi)

+(yj)
+)ω ⊆ L for 1 ≤ i, j ≤ n and i 6= j [16, 15].

Full Automaton. Sakoda and Sipser introduced the full automaton technique [21] (the name
was first coined in [27]) and used it to obtain several completeness and lower bound results on
transformations involving 2-way finite automata [21]. In particular, they proved a classic result of
automata theory: the lower bound of complementing an NFA with n states is 2n.

To establish lower bounds for complementation, one starts with designing a class of automata
An and then a class of words Wn such that Wn are not contained in L (An). Next one shows that
runs of purported complementary automata Cn on Wn exhibit dual properties by application of the
fooling set technique. However, some fooling runs can only be generated by long and sophisticated
words, which are very difficult to be “guessed” right from the beginning. The ingenuity of the full
automaton technique is to remove two levels of indirections: since the ultimate goal is to construct
fooling runs, why should not one start with runs directly, and build Wn and An later?

Without a priori constraints imposed from An or Wn (they do not exist yet), full automata
operate on all possible runs; for a full automaton of n states, every possible unit transition graph
(bipartite graph with 2n vertices) is identified with a letter, and words are nothing but potential
run graphs. Removing the two levels of indirections proved to be powerful. By this technique, the
2n lower bound proof for complementing NFA was surprisingly short and easy to understand [21]
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(a fooling set method was implicit in the proof).
We should note that full automata operate on large alphabets whose size grows exponentially

with the state size, but this does not essentially limit its application to automata on conventional
alphabets. By an encoding trick, a large alphabet can be mapped to a small alphabet with no
compromise to lower bound results [22, 27, 3].

Ranking. For ω-automata, the power of fooling set and full automaton technique was further
enhanced by the use of rankings on run graphs [27, 3]. Since first introduced in [9], rankings have
been shown to a powerful tool to represent properties of run graphs; complementation constructions
for various types of ω-automata were obtained by discovering respective rankings that precisely
characterize those run graphs that contain no accepting path (with respect to source automata) [12,
13, 14, 6, 10]. With the help of rankings, constructing a fooling set amounts to designing certain
type of rankings. In fact, as shown below, an explicit description of a fooling set might be very
hard to find, but the essential properties the fooling set induce can be concisely represented by
certain type of rankings.

Our Results. In this paper we establish a lower bound L(n, k) for Streett complementation:
2Ω(n lgn+kn lg k) for k = O(n) and 2Ω(n2 lgn) for k = ω(n), which matches the upper bound obtained
in [4]. This lower bound applies to all Streett complementation constructions that output union-
closed automata (see Section 2), which include Büchi, generalized Büchi and Streett automata.
This bound considerably improves the current best bound 2Ω(n lgnk) [27], especially in the case
k = Θ(n).

Determinization is another fundamental concept in automata theory and it is closely related
to complementation. A deterministic T -automaton can be easily complemented by switching from
T -acceptance condition to the dual co-T condition (e.g., Streett vs. Rabin). Therefore, the lower
bound L(n, k) also applies to Streett determinization if the output automata are the dual of union-
closed automata. In particular, no construction for Streett determinization can output Rabin
automata with state size asymptotically less than L(n, k).

We can get a slightly weaker result for constructions that output Rabin automata (which are
not union-closed): no construction for Streett complementation can output Rabin automata with
state size n′ ≤ L(n, k) and index size k′ = O(n′), due to the fact that a Rabin automaton with
state n′ and index size k′ can be translated to an equivalent Büchi automaton with O(n′k′) states.
For the same reason, no construction for Streett determinization can output Streett automata with
state size n′ ≤ L(n, k) and index size k′ = O(n′).

Even with the fooling set and full automaton techniques and the assistance of rankings, a
difficulty remains: in the setting of Streett complementation, how large can a fooling set for a com-
plementary automaton be? The challenge is two-fold. One is to implant potentially contradictory
properties in each member of a fooling set so that complementary run graphs can be obtained by
certain combinations of those members. The other is to avoid correlations between members of a
fooling set so that each member has to be memorized by a distinct state in a purported comple-
mentary automaton. By exploiting the nature of Streett acceptance conditions, our fooling set is
obtained via a type of multi-dimensional rankings, called Q-rankings, and members in the fool-
ing set are called Q-words. To simultaneously accommodate potentially contradictory properties
in multi-dimension requires handling nontrivial subtleties. We shall continue this discussion in
Section 3 after presenting the definition of Q-rankings.
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Paper Organization. Section 2 presents notations and basic terminology in automata theory.
Section 3 introduces full Streett automata, Q-rankings and Q-words, and use them to establish the
lower bound. Section 4 concludes with a discussion. Technical proofs are omitted from the main
text, but they can be found in the appendix.

2 Preliminaries

Basic Notations. Let N be the set of natural numbers. We write [i..j] for {k ∈ N | i ≤ k ≤ j},
[i..j) for [i..j−1], [n] for [0..n). For an infinite sequence ̺, we use ̺(i) to denote the i-th component
for i ∈ N, ̺[i..j] (resp. ̺[i..j)) to denote the subsequence of ̺ from position i to position j (resp.
j − 1). Similar notations for finite sequences and we use |̺| to denote the length of ̺. We assume
readers are familiar with notations in language theory, such as α ◦ α′, α∗, α+ and αω where α and
α′ are sequences and α is finite, and similar ones such as S ◦ S′, S∗, S+ and Sω where S is a set
of finite sequences and S′ is a set of sequences.

Automata and Runs. A finite (nondeterministic) automaton on infinite words (ω-automaton)
is a 5-tuple A = 〈Σ, S,Q,∆,F〉, where Σ is an alphabet, S is a finite set of states, Q ⊆ S is a set
of initial states, ∆ ⊆ S × Σ× S is a transition relation, and F is an acceptance condition.

An infinite word (ω-words) over Σ is an infinite sequence of letters in Σ. A run ̺ of A over an
ω-word w is an infinite sequence of states in S such that ̺(0) ∈ Q and, 〈̺(i), w(i), ̺(i+1)〉 ∈ ∆
for i ∈ N. Finite runs are defined similarly. Let Inf (̺) the set of states that occur infinitely many
times in ̺. An automaton accepts w if there exists a run ̺ over w that satisfies F , which usually
is defined as a predicate on Inf (̺). We use L (A) to denote the set of ω-words accepted by A and
L (A) the complement of L (A).

Acceptance Conditions and Automata Types. ω-automata are classified according their
acceptance conditions. Below we list three types of ω-automata relevant to this paper. Let F be
a subset of Q and G,B two functions I → 2Q where I = [1..k] is called the index set.

• Büchi : 〈F 〉: Inf (̺) ∩ F 6= ∅.

• Streett : 〈G,B〉I : ∀i ∈ I, Inf (̺) ∩G(i) 6= ∅ → Inf (̺) ∩B(i) 6= ∅.

• Rabin: [G,B]I : ∃i ∈ I, Inf (̺) ∩G(i) 6= ∅ ∧ Inf (̺) ∩B(i) = ∅.

Note that Streett and Rabin are dual to each other. An automaton A is called union-closed if
when two runs ̺ and ̺′ are accepting, so is any run ̺′′ if Inf (̺′′) = Inf (̺) ∪ Inf (̺′). It is easy to
verify that both Büchi and Streett automata are union-closed while Rabin automata are not. Let
J ⊆ I. We use 〈G,B〉J to denote the Streett condition with respect to only indices in J . When
J is a singleton, say J = {j}, we simply write 〈G(j), B(j)〉 for 〈G,B〉J . We can assume that B is
injective and the index size k is bound by 2n, because if B(i) = B(i′) for two different i, i′ ∈ I, then
we can shrink the index set I by replacing 〈G,B〉{i,i′} by 〈G(i)∪G(i′), B(i)〉. The same convention
and assumption are used for Rabin condition.

∆-Graphs. A ∆-graph (run graph) of an ω-word w under A is a directed graph Gw = (V,E)
where V = S ×N and E = {〈〈s, l〉, 〈s′, l+1〉〉 ∈ V × V | s, s′ ∈ S, l ∈ N, 〈s,w(l), s′〉 ∈ ∆ }. By the
l-th level, we mean the vertex set S ×{l}. Let S = {s0, . . . , sn−1}. By sl-track we mean the vertex
set {sl}×N. For a subset X of S, we call a vertex 〈s, l〉 an X-vertex if s ∈ X. We simply use s for
〈s, l〉 when the index is irrelevant.
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A ∆-graph Gw of a finite word w is defined similarly. By |Gw| we denote the length of Gw, which
is the same as |w|. Gσ for σ ∈ Σ is called a unit ∆-graph. A path in Gw is called a full path if
the path goes from level 0 to level |Gw|. By Gw ◦ Gw′ , we mean the concatenation of Gw and Gw′ ,
which is the graph obtained by merging the last level of Gw with the first level of Gw′ . Note that
Gw ◦ Gw′ = Gw◦w′ .

Let w be a finite word. For l, l′ ∈ N, s, s′ ∈ S we write 〈s, l〉
w
−→ 〈s′, l′〉 to mean that there exists

a run ̺ of A such that ̺[l..l′], the subsequence ̺(l)̺(l + 1) · · · ̺(l′) of ̺, is a finite run of A from s

to s′ over w. We simply write s
w
−→ s′, when omitting level indices causes no confusion.

Full Automata. A full automaton 〈Σ, S,Q,∆,F〉 is a finite automaton with the following con-
ditions: Σ = 2S×S , ∆ ⊆ S × 2S×S × S, and for all s, s′ ∈ S, σ ∈ Σ, 〈s, σ, s′〉 ∈ ∆ if and only if
〈s, s′〉 ∈ σ [21, 27, 3]. For full automata, the alphabet Σ and the transition relation ∆ are completely
determined by S. As stated in the introduction, the essence of full automaton technique is to use
run graphs as free as possible, without worrying which word generates which run graph. Let the
functional version of ∆ be δ : Σ → 2S×S , where for every s, s′ ∈ S and every σ ∈ Σ, 〈s, s′〉 ∈ δ(σ)
if and only if 〈s, σ, s′〉 ∈ ∆. The function δ maps a letter σ to a unit ∆-graph Gσ, which represents
the complete behavior of A over σ (technically speaking, Gσ, with index dropped, is the graph of
δ(σ)). In the setting of full automata, δ is simply the identity function on 2S×S . Words and run
graphs are essentially the same thing. From now on we use the two terms interchangeably. For
example, for a word w, s

w
−→ s′ is equivalent to say that a full path in Gw goes from s to s′.

3 Lower Bound

In this section we define full Streett automata, and related Q-rankings and Q-words, and use them
to establish the lower bound. From now on, we reserve n and k, respectively, for the effective
state size and index size in our construction (except in Theorem 2 and Section 4 where n and k,
respectively, mean the state size and index size of a complementation instance). All related notions
are in fact parameterized with n and k, but we do not list them explicitly unless required for clarity.
Let I be [1..k]. We first describe the plan of proof.

For each k, n > 0, we define a full Streett automaton S = (Σ, S,Q,∆,F) and a set of Q-
rankings f : Q → [1..n] × Ik. For each Q-ranking f , we define a finite ∆-graph Gf , called a
Q-word. We then show that for each f , (Gf )

ω 6∈ L (S), yet ((Gf )
+(Gf ′)+)ω ⊆ L (S) for every

distinct pair of Q-rankings f and f ′, that is, Q-words constitute a fooling set for L (S). Using
Michel’s scheme [16, 15, 27], we show that if a union-closed automaton C complements S, then its
state size is no less than the number of Q-rankings, because otherwise we can “weave” the runs
of (Gf )

ω and (Gf ′)ω in such a way that C would accept a word in ((Gf )
+(Gf ′)+)ω, contradicting

((Gf )
+(Gf ′)+)ω ⊆ L (S).

Definition 1 (Full Streett Automata). A family of full Streett automata {S = 〈Σ, S,Q,∆,F〉}n,k>0

is such that

1.1 S = Q∪PG∪PB∪T where Q, PG, PB and T are pairwise disjoint sets of the following forms:

Q = {q0, · · · , qn−1}, PG = {g1, · · · , gk}, T = {t}, PB = {b1, · · · , bk} .

1.2 F = 〈G,B〉I such that G(i) = {gi} and B(i) = {bi} for i ∈ I.

Q is intended to be the domain of Q-rankings. PG and PB are pools from which singletons
G(i)’s and B(i)’s are formed. T is to be used for building a bypass track that makes graph
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concatenation behaves like a parallel composition so that properties associated with each subgraph
are all preserved in the final concatenation.

Definition 2 (Q-Ranking). A Q-ranking for S is a function f : Q → [1..n]×Ik, which is identified
with a pair of functions 〈r, h〉, where r : Q → [1..n] is one-to-one, and h : Q → Ik maps a state to
a permutation of I.

For a Q-ranking f = 〈r, h〉, we call r (resp. h) the R-ranking or numeric ranking (resp. H-
ranking or index ranking) of f . We use Q-ranks (resp. R-ranks, H-ranks) to mean values of
Q-rankings (resp. R-rankings, H-rankings). For q ∈ Q, we write h(q)[i] (i ∈ I) to denote the i-th
component of h(q). Let DQ be the set of all Q-rankings and |DQ| be the size of DQ. Clearly, we
have n! R-rankings and (k!)n H-rankings, and so |DQ| = (n!)(k!)n = 2Ω(n lgn+nk lg k).

As stated in the introduction, Q-rankings are essential for obtaining the lower bound. It turns
out that H-rankings are the core of Q-rankings, for (k!)n already begins to dominate n! when k

is larger than lg n. Now we explain the idea behind the design of H-rankings. Recall that our
goal is to have (Gf )

ω 6∈ L (S) for any Q-ranking f as well as ((Gf )
+(Gf ′)+)ω ⊆ L (S) for any two

different Q-rankings f and f ′. For simplicity, we ignore R-rankings and assume Q-rankings are
just H-rankings. We say that a finite path discharges obligation j if the path visits B(j) and a
finite path owes obligation j if the path visits G(j) but does not visit B(j). As shown below, for
each i ∈ [n], qi-track in Gf is associated with the k-tuple f(qi), which is a permutation of I, and
exactly k full paths in Gf goes from the beginning of qi-track to the end of qi-track. We say that
those paths on qi-track. For each i ∈ [n] and j ∈ I, the j-th full path on qi-track owes exactly
the obligation f(qi)[j]. Let ̺ = ̺0 ◦ ̺1 ◦ · · · be an infinite path in (Gf )

ω where ̺t (t ≥ 0) is a full
path in the t-th Gf . Without R-rankings, our construction prescribes that all ̺t start and end at
a specific track, say qi-track, and hence are associated with f(qi). Obligations associated with all
̺t simply form a subset I ′ of I. However, we impose an ordering ≺f,i on I ′ (different from the
standard numeric ordering) such that f(qi)[j] ≺f,i f(qi)[j

′] if and only if j < j′. The ordering ≺f,i

is total thanks to f(qi) being a permutation of I. Then a condition in our construction guarantees
that the minimum obligation with respect to ≺f,i will never be discharged on ̺, and therefore ̺

violates 〈G,B〉I . Since this ̺ is chosen arbitrarily, we have (Gf )
ω 6∈ L (S).

Now let G ∈ ((Gf )
+(Gf ′)+)ω. To show G ∈ L (S), we construct an infinite path ̺ = ̺0 ◦̺1 ◦· · ·

in G that satisfies 〈G,B〉I , where ̺t (t ≥ 0) is a full path in the t-th subgraph (which is either Gf

or Gf ′). Let i be such that f(qi) 6= f ′(qi) (it is always possible by the assumption f 6= f ′). Different
from before, qi-track in Gf is associated with f(qi) and qi-track in Gf ′ is associated with f ′(qi).
Since f(qi) and f ′(qi) are different permutations of I, a condition in our construction ensures that
a full path ̺f in Gf and a full path ̺f ′ in Gf ′ , both on qi-track, mutually discharge each other’s
obligations. So we let all ̺t in Gf be ̺f and all ̺t in Gf ′ be ̺f ′ . Since there are infinitely many
̺f and ̺f ′ in ̺, ̺ satisfies 〈G,B〉I , giving us G ∈ L (S). Since G is chosen arbitrarily, we have
((Gf )

+(Gf ′)+)ω ⊆ L (S). Now we are read to formally define Q-words.

Definition 3 (Q-Word). A finite ∆-graph G is called a Q-word if every level of G is ranked by
the same Q-ranking f = 〈r, h〉 and G satisfies the following additional conditions.

3.1 For every q, q′ ∈ Q, if r(q) > r(q′), there exists a full path ̺ from 〈q, 0〉 to 〈q′, |G |〉 such that
̺ visits all of B(1), . . . , B(k).

3.2 For every q ∈ Q, there exist exactly k full paths ̺1, . . . , ̺k from 〈q, 0〉 to 〈q, |G |〉 such that
for every i ∈ I, ̺i does not visit B(h(q)[j]) for j ≤ i, but visits B(h(q)[j]) for i < j, and ̺i
does not visit G(h(q)[j]) for j < i, but visits G(h(q)[i]).
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3.3 Only Q-vertices have outgoing edges at the first level and incoming edges at the last level.

3.4 For every q, q′ ∈ Q, there exists no full path from 〈q, 0〉 to 〈q′, |G |〉 if r(q) < r(q′).

Property (3.1) concerns with only R-rankings. It says that for every two tracks with different
R-ranks, a path exists that goes from the track with higher rank to the track with the lower rank,
and such a path discharges all obligations in I. So if those (finite) paths occur infinitely often as
fragments of an infinite path ̺, then ̺ clearly satisfies the Streett condition 〈G,B〉I . Property (3.2)
concerns with only H-rankings. It says that exactly k full “parallel” paths exist between the two
ends of every track, and each owes exactly one distinct obligation in I. As shown in Theorem 2,
Property (3.2) is the core of the whole construction and proof, because with k increasing, H-
rankings contribute more and more to the overall complexity. Properties (3.3) and (3.4) are merely
technical; they ensure that no other full paths exist besides those prescribed by Properties (3.1)
and (3.2). Note that in general more than one Q-word could exist for a Q-ranking f . We simply
pick an arbitrary one and call it the Q-word of f , denoted by Gf .

Theorem 1 (Q-Word). A Q-word exists for every Q-ranking.

Example 1 (Q-Word). Let us consider a full Streett automaton S where n = 3, k = 2,

Q = {q0, q1, q2}, T = {t}, PB = {b1, b2}, PG = {g1, g2},

and the following Q-ranking f = 〈r, h〉:

r(q0) = 2, r(q1) = 1, r(q2) = 3, h(q0) = 〈1, 2〉, h(q1) = 〈1, 2〉, h(q2) = 〈2, 1〉 .

Figure 1 shows a Q-word Gf , which consists of two subgraphs Gr and Gh, where Gr in turn consists

of two parts: G
(1)
r (level 0 to level 3) and G

(2)
r (level 3 to 6), and Gh in turn consists of three parts:

G
(0)
h (level 6 to level 12), G

(1)
h (level 12 to level 18), and G

(2)
h (level 18 to level 24). Gr and Gh are

aimed to satisfy Properties (3.1) and (3.2), respectively.

The R-rank (numeric rank) of every level of Gr is (2, 1, 3). In G
(1)
r , a full path ̺r starts from

〈q2, 0〉 whose R-rank is the highest. The path visits 〈b1, 1〉, 〈b2, 2〉 and then 〈q0, 3〉 whose R-rank is

one less than that of q2. Similarly in G
(2)
r , the path continues from 〈q2, 3〉, visits 〈b1, 4〉, 〈b2, 5〉 and

ends at 〈q1, 6〉 whose R-rank is one less than that of q0.

The H-rank (index rank) of every level of Gh is (〈1, 2〉, 〈1, 2〉, 〈2, 1〉). Let us take a look at G
(1)
h .

A full path ̺h (marked green except the last edge) starts at 〈q1, 12〉, visits 〈b2, 13〉 and 〈g1, 14〉
(because of h(q1)[1] = 1), and enters t-track (the bypass track {t} × N) at 〈t, 15〉, from where it
stays on t-track till reaching 〈t, 17〉. Another full path ̺′h (marked red except the last edge) starts at
〈q1, 12〉 too, takes q1-track to 〈q1, 15〉, and then visits 〈g2, 16〉 (because of h(q1)[2] = 2), and enters
t-track at 〈t, 17〉. Both ̺h and ̺′h return to q1-track at 〈q1, 18〉 using the edge 〈〈t, 17〉, 〈q1, 18〉〉

(marked blue). By ̺0→6, ̺6→12 and ̺18→24 (all marked blue) we denote the q1-tracks in Gr, in G
(0)
h

and in G
(2)
h , respectively. It is easy to verify that Property (3.1) with respect to q2 and q1 is satisfied

by both ̺r ◦ ̺6→12 ◦ ̺h ◦ ̺18→24 and ̺r ◦ ̺6→12 ◦ ̺h′ ◦ ̺18→24. Also easily seen is that Property (3.2)
with respect to q1 is satisfied by ̺0→6 ◦ ̺6→12 ◦ ̺h ◦ ̺18→24 and ̺0→6 ◦ ̺6→12 ◦ ̺h′ ◦ ̺18→24.

We are ready for the lower bound proof. Let J ⊆ I. We use 〈G,B〉J to denote the Streett
condition with respect to only indices in J . The corresponding Rabin condition [G,B]J is similarly
defined. When J is a singleton, say J = {j}, we simply write 〈G(j), B(j)〉 for 〈G,B〉J and
[G(j), B(j)] for [G,B]J . Obviously, if an infinite run satisfies 〈G,B〉J (resp. [G,B]J), then the run
also satisfies 〈G,B〉J ′ (resp. [G,B]J ′) for J ′ ⊆ J (resp. J ⊆ J ′ ⊆ I).
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Lemma 1. For every Q-ranking f , (Gf )
ω 6∈ L (S).

Proof. Let f = 〈r, h〉, G = (Gf )
ω and ̺ an infinite path in G . For simplicity, we assume ̺ only

lists states appearing on the boundaries of Gf fragments; for any j ≥ 0, ̺(j) (resp. ̺(j + 1)) is a
state in the first (resp. last) level of the j-th Gf fragment. Let ̺[j, j+1] denote the finite fragment
from ̺(j) to ̺(j + 1). Let ̺[j,∞] denote the suffix of ̺ beginning from ̺(j).

By Property (3.3), ̺(i) ∈ Q for i ≥ 0. By Property (3.4), ̺ eventually stabilizes on R-ranks
in the sense that there exists a j0 such that for any j ≥ j0, r(̺(j)) = r(̺(j + 1)). Because
every level of G has the same rank, ̺ stabilizes on a (horizontal) track after j0, i.e., there exists
i ∈ [n] such that ̺(j) = qi for j ≥ j0. Property (3.2) says that there are exactly k full paths
̺1, . . . , ̺k from 〈qi, 0〉 to 〈qi, |Gf |〉 in Gf . Therefore, ̺[j0,∞] can be divided into the infinite sequence
̺[j0, j0 +1], ̺[j0 +1, j0 +2], . . ., each of which is one of ̺1, . . . , ̺k. Let k0 ∈ I be the smallest index
such that ̺k0 appears infinitely often in this sequence, i.e., for some j1 ≥ j0, none of ̺1, . . . , ̺k0−1

appears in ̺[j1,∞]. By Property (3.2) again, ̺[j1,∞] visits none of B(h(qi)[1]), . . . , B(h(qi)[k0]),
but visits G(h(qi)[k0]) infinitely often (because ̺k0 appears infinitely often). In particular, ̺ satisfies
[G(t), B(t)] for t = h(qi)[k0] and hence [G,B]I . Because ̺ is chosen arbitrarily, we have G 6∈
L (S).

Lemma 2. For every two different Q-rankings f and f ′, ((Gf )
+ ◦ (Gf ′)+)ω ⊆ L (S).

Proof. Let G ∈ ((Gf )
+ ◦ (Gf ′)+)ω be an ω-word where both Gf and Gf ′ occur infinitely often in G .

Let f = 〈r, h〉 and f ′ = 〈r′, h′〉. We have two cases: either r 6= r′ or h 6= h′.
If r 6= r′. Since both r and r′ are one-to-one functions from Q to [1..n], there must be i, j ∈ [n]

such that r(qi) > r(qj) and r′(qj) > r′(qi). By Property (3.1), Gf contains a full path ̺i→j from
〈qi, 0〉 to 〈qj, |Gf |〉 that visits all of B(1), . . . , B(k). By the same property, Gf ′ contains a path ̺′j→i

from 〈qj, 0〉 to 〈qi, |Gf ′ |〉 that also visits all of B(1), . . . , B(k). Then ̺i→j ◦̺
′
j→i is a path in Gf ◦Gf ′

that visits all of B(1), . . . , B(k). Also by Property (3.2), Gf (resp. Gf ′) contains a path ̺i→i (resp.
̺′i→i) from 〈qi, 0〉 to 〈qi, |Gf |〉 (resp. from 〈qi, 0〉 to 〈qi, |Gf ′ |〉).

Now we define an infinite path ˆ̺ in G as follows. We pick the finite path ̺i→i in every Gf

fragment and ̺′i→i in every Gf ′ fragment, except that in the case where a Gf fragment is followed
immediately by a Gf ′ fragment, we pick ̺i→j in the preceding Gf and ̺′j→i in the following Gf ′ . It
is easily seen that ˆ̺, in the form

((̺i→i)
∗ ◦ (̺i→j ◦ ̺

′
j→i)

+ ◦ (̺′i→i)
∗)ω ,

visits all of B(1), . . . , B(k) infinitely often, and hence it satisfies the Streett condition 〈G,B〉I .
If h 6= h′. Then there exist i ∈ [n], j ∈ I such that h(qi)[j] 6= h′(qi)[j] and h(qi)[j

∗] = h′(qi)[j
∗]

for j∗ ∈ [1..j − 1]. Since both h(qi) and h′(qi) are permutations of I, we have j < k and

{ h(qi)[j
∗] | j∗ ∈ [j..k] } = { h′(qi)[j

∗] | j∗ ∈ [j..k] } . (1)

By Property (3.2), in Gf there exists a path ̺i→i from 〈qi, 0〉 to 〈qi, |Gf |〉 that visits none of
G(h(qi)[j

∗]) for j∗ ∈ [1..j − 1], but visits all of B(h(qi)[j
∗]) for j∗ ∈ [j + 1..k]. Similarly, in Gf ′

there exists a path ̺′i→i from 〈qi, 0〉 to 〈qi, |Gf ′ |〉 that visits none of G(h′(qi)[j
∗]) for j∗ ∈ [1..j − 1],

but visits all of B(h′(qi)[j
∗]) for j∗ ∈ [j+1..k]. Because h(qi) and h′(qi) are different permutations

of I, h′(qi)[j] = h(qi)[j0] for some j0 ∈ [j +1..k] and h(qi)[j] = h′(qi)[j1] for some j1 ∈ [j +1..k]. It
follows that both sides of (1) are equal to

{ h(qi)[j
∗] | j∗ ∈ [j + 1..k] } ∪ { h′(qi)[j

∗] | j∗ ∈ [j + 1..k] } .

Therefore ̺i→i ◦ ̺
′
i→i (in Gf ◦ Gf ′) visits all of B(h(qi)[j

∗]) for j∗ ∈ [j..k].
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Now let ˆ̺ be defined as follows: ˆ̺ takes ̺i→i in every Gf fragment and ̺′i→i in every Gf ′

fragment. That is, ˆ̺ takes the following form

((̺i→i)
+ ◦ (̺′i→i)

+)ω .

Recall that h(qi)[j
∗] = h′(qi)[j

∗] for j∗ ∈ [1..j−1]. It follows that ˆ̺ does not visit any of G(h(qi)[j
∗])

for j∗ ∈ [1..j − 1] because neither ̺i→i nor ̺
′
i→i does. Also since both Gf and Gf ′ occur infinitely

often in G , ˆ̺ contains infinitely many ̺i→i ◦ ̺
′
i→i, which implies that ˆ̺ visits all of B(h(qi)[j

∗]) for
j∗ ∈ [j..k] infinitely often. Since h(qi) is a permutation of I, ˆ̺ satisfies 〈G,B〉I .

In either case (whether r 6= r′ or h 6= h′), G contains a path that satisfies 〈G,B〉I , which means
G ∈ L (S). Because G is arbitrarily chosen, we have ((Gf )

+ ◦ (Gf ′)+)ω ⊆ L (S).

The following lemma is the core of Michel’s scheme [16, 15], recast in the setting of full automata
with rankings [27, 3]. Recall that DQ denotes the set of all Q-rankings and |DQ| denotes the
cardinality of DQ.

Lemma 3. A union-closed automaton that complements S must have at least |DQ| states.

Proof. Let C be a union-closed automaton that complements S. By Lemma 1, for every Q-ranking
f , (Gf )

ω ∈ L (C). Let f , f ′ be two different Q-rankings and Gf and Gf ′ the corresponding Q-words.
Let ̺ and ̺′ be the corresponding accepting runs of (Gf )

ω and (Gf ′)ω, respectively. Also let ̺0 and
̺′0, respectively, be the accepting runs of (Gf )

ω and (Gf ′)ω when we treat Gf and Gf ′ as atomic
letters, that is, ̺0 (resp. ̺′0) only records states visited at the boundary of Gf (resp. Gf ′) and is
a subsequence of ̺ (resp. ̺′). Obviously, Inf (̺0) ⊆ Inf (̺), Inf (̺′0) ⊆ Inf (̺′), Inf (̺0) 6= ∅ and
Inf (̺′0) 6= ∅. If Inf (̺0) ∩ Inf (̺′0) = ∅ for any pair of f and f ′, then clearly C has at least |DQ|
states because the state set of C contains |DQ| pairwise disjoint nonempty subsets.

Therefore we can assume that Inf (̺0) ∩ Inf (̺′0) 6= ∅ for a fixed pair of f and f ′. Let q be
a state in Inf (̺0) ∩ Inf (̺′0). Because q occurs infinitely often in ̺, then for some m > 0, there
exists a path in (Gf )

m that goes from q to q and visits exactly all states in Inf (̺) (or equivalently
speaking, C, upon reading the input word (Gf )

m, runs from state q to q, visiting exactly all states

in Inf (̺) during the run). By q
(Gf )

m

−−−−→
! Inf (̺)

q we denote the existence of such a path. Similarly, we

have q
(Gf ′ )

m′

−−−−−→
! Inf (̺′)

q for some m′ > 0. Also we have q0
(Gf )

m0

−−−−→ q where q0 is an initial state of C. Now

consider the following infinite run ̺∗ in the form

q0
(Gf )

m0

−−−−→ q
(Gf )

m

−−−−→
! Inf (̺)

q
(Gf ′ )

m′

−−−−−→
! Inf (̺′)

q
(Gf )

m

−−−−→
! Inf (̺)

q
(Gf ′ )

m′

−−−−−→
! Inf (̺′)

q · · ·

which is an accepting run of C for (Gf )
m0 ◦ ((Gf )

m ◦ (Gf ′)m
′

)ω because Inf (̺∗) = Inf (̺) ∪ Inf (̺′).
However, by Lemma 2, (Gf )

m0◦((Gf )
m◦(Gf ′)m

′

)ω ∈ ((Gf )
+◦(Gf ′)+)ω ⊆ L (S), a contradiction.

Theorem 2. Streett complementation is in 2Ω(n lgn+kn lg k) for k = O(n) and in 2Ω(n2 lgn) for
k = ω(n), where n and k are the state size and index size of a complementation instance.

Proof. Here we switch to use n0 and k0, respectively, for the effective state size and index size in
our construction S. We have n = 2k0 + n0 + 1. By Lemma 3, the complementation of S requires
|DQ| = 2Ω(n0 lgn0+n0k0 lg k0) states. If k0 ≤ k, we can construct a full Streett automaton S ′ with
state size n and index size k as follows. S ′ is almost identical to S except that its acceptance
condition is defined as F ′ = 〈G′, B′〉I′ (for I ′ = [1..k]) such that for i ∈ [1..k0], G

′(i) = G(i) and
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B′(i) = B(i) and for i ∈ [k0 + 1, k], G′(i) = B′(i) = ∅. It is easily seen that S ′ is equivalent to S
and hence the complementation lower bound for S also applies to that for S ′. Now when k = O(n),
we can always find n0 and k0 such that k0 ≤ k, yet n0 = Ω(n) and k0 = Ω(k), and hence we have
the lower bound 2Ω(n lgn+kn lg k). When k = ω(n), we set k0 = n0 so that k0 ≤ k, n0 = Ω(n) and
k0 = Ω(n), and hence we have the lower bound 2Ω(n2 lgn).

4 Concluding Remarks

In this paper we proved a tight lower bound L(n, k) for Streett complementation. We note that we
can improve the lower bound by two modifications. First, we allow G(i) (resp. B(i)) to be arbitrary
subsets of PG (resp. PB). Second, we also use multi-dimensional R-rankings; the range of r is a
set of k-tuples of integers in [1..n]. As a result, both R-ranks and H-ranks are k-tuples of integers
where k can be as large as 2n (the current effective k is bounded by n). These two modifications
require much more sophisticated definition of Q-rankings and construction of Q-words, but they
have no asymptotic effect on L(n, k). The situation is different from Rabin complementation [3],
where Q-rankings are also multi-dimensional (though different terms other than Q-rankings and Q-
words were used), and each component in a k-tuple (the value of a Q-ranking) is independent from
one another, and hence each can impose an independent behavior on Q-words. Put it in another
way, no matter how large the index set is (the maximum size can be 2n), all dual properties, each of
which is parameterized with an index, can be realized in one Q-word. For Streett complementation,
the diminishing gain when pushing up k made us realize that with increasing number of Q-rankings,
more and more correlations occur between Q-rankings. Exploiting these correlations leads us to
the discovery of the corresponding upper bound.
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g2 • • • • • • •

g1 • • • • • • •

b2 • • • • • • •

b1 • • • • • • •

q0 〈2, 〈1, 2〉〉 • • • • • • •

q1 〈1, 〈1, 2〉〉 • • • • • • •

q2 〈3, 〈2, 1〉〉 • • • • • • •

t • • • • • • •

00 01 02 03 04 05 06

g2 • • • • • • •

g1 • • • • • • •

b2 • • • • • • •

b1 • • • • • • •

q0 〈2, 〈1, 2〉〉 • • • • • • •

q1 〈1, 〈1, 2〉〉 • • • • • • •

q2 〈3, 〈2, 1〉〉 • • • • • • •

t • • • • • • •

06 07 08 09 10 11 12

(A) The R-word Gr (B) G
(0)
h of the H-word Gh

g2 • • • • • • •

g1 • • • • • • •

b2 • • • • • • •

b1 • • • • • • •

q0 〈2, 〈1, 2〉〉 • • • • • • •

q1 〈1, 〈1, 2〉〉 • • • • • • •

q2 〈3, 〈2, 1〉〉 • • • • • • •

t • • • • • • •

12 13 14 15 16 17 18

g2 • • • • • • •

g1 • • • • • • •

b2 • • • • • • •

b1 • • • • • • •

q0 〈2, 〈1, 2〉〉 • • • • • • •

q1 〈1, 〈1, 2〉〉 • • • • • • •

q2 〈3, 〈2, 1〉〉 • • • • • • •

t • • • • • • •

18 19 20 21 22 23 24

(C) G
(1)
h of the H-word Gh (D) G

(2)
h of the H-word Gh

Figure 1: Q-word Gf (f = 〈r, h〉)
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A Proofs

In this section we prove Theorem 1. Recall that we need a construction to simultaneously satisfy
all properties in Definition 3, which are parameterized with pairs of states (Condition (3.1)) or
states (Condition (3.2)). The idea is to concatenate a sequence of finite ∆-graphs, each of which
satisfies the properties with respect to a specific pair of states or a specific state. With the help of
the bypass track (t-track), properties associated with each individual subgraph are all preserved in
the final concatenation, giving us a desired Q-word.

Let f = 〈r, h〉. Gf divides into two sequential subgraphs Gr and Gh, which satisfy Proper-
ties (3.1) and (3.2), respectively. Properties (3.3) and (3.4) are obvious once the final construction
is shown. As stated earlier, Property (3.1) and Property (3.2) are orthogonal; Property (3.1)
only relies on R-rankings and Property (3.2) only relies on H-rankings. We call a finite ∆-graph
whose every level is ranked by the same R-ranking, an R-word if it satisfies Properties (3.1), (3.3)
and (3.4). Similarly, a finite ∆-graph whose every level is ranked by the same H-ranking, is called
an H-word if it satisfies Properties (3.2), (3.3) and (3.4). As Q-words, H-words (resp. R-words)
are not uniquely determined by H-rankings (resp. R-rankings). Nevertheless, all H-words (resp.
R-words) corresponding to a specific h (resp. r) serve the construction purpose equally well, and
hence we simply name an arbitrarily chosen one by Gh (resp. Gr). Theorem 1 builds on Lemmas 4
and 5.

Lemma 4 (R-Word). An R-word exists for every R-ranking.

Proof. Let r be an R-ranking. Gr is constructed as follows. We order Q as qm1
, . . . , qmn such that

r(qm1
) > · · · > r(qmn). Gr has n − 1 parts G

(1)
r , . . . ,G

(n−1)
r . In G

(i)
r (i ∈ [1..n − 1]), a path leaves

qmi
whose R-rank is the i-th large, visits all B(j)-vertices (j ∈ I) and ends at qmi+1

whose R-rank
is the (i+ 1)-th large. Formally we define the following letters

Id(Q) = { 〈qi, qi〉 | i ∈ [n] },

Q(i)ToB(1) = Id(Q) ∪ { 〈qi, b1〉 }, (i ∈ [n])

B(i)ToB(i+ 1) = Id(Q) ∪ { 〈bi, bi+1〉 }, (i ∈ [1..k − 2])

B(k)ToQ(i) = Id(Q) ∪ { 〈bk, qi〉 }, (i ∈ [n])

and then define Gr as

Q(m1)ToB(1) ◦B(1)ToB(2) ◦ · · · ◦B(k)ToQ(m2)

◦ · · · ◦Q(mn−1)ToB(1) ◦B(1)ToB(2) ◦ · · · ◦B(k)ToQ(mn) .

We verify that Gr satisfies Property (3.1). Let q, q′ ∈ Q be such that r(q) > r(q′). Let i, i′ ∈ [1..n]
be such that i < i′, q = qmi

and q′ = qmi′
. Recall that by a full path in G we mean a path going

from level 0 to level |G |. We define a full path ̺i,i′ in Gr as follows. The path ̺i,i′ takes qmi
-track

until it reaches the left boundary of the letter Q(mi)ToB(1), from where it leaves qmi
-track to visit

b1, . . . , bk (in this order) and then qmi+1
. Continuing from qmi+1

, ̺i,i′ follows the same pattern till
it reaches qmi+2

. Repeating this pattern i′− i times, ̺i,i′ reaches qmi′
from where it takes qmi′

-track
till the end of Gr. In summary, ̺i,i′ takes the form

q = qmi
→ · · · → qmi

→ b1 → · · · → bk → qmi+1
→ b1 → · · · → bk → qmi+2

→ · · · · · · · · · → b1 → · · · → bk → qmi′
→ · · · → qmi′

= q′ .

Easily seen from the construction, with respect to any pair q and q′ where r(q) > r(q′), Prop-
erty (3.1) is satisfied by the corresponding ̺i,i′ . Properties (3.3) and (3.4) are immediate from the
construction.

14



Example 2 (R-Word). Let us revisit Example 1. Q is ordered as q2, q0, q1 for r(q2) > r(q0) > r(q1).

So m1 = 2, m2 = 0 and m3 = 1. In Figure 1, the R-word Gr consists of two parts: G
(1)
r (level 0 to

level 3) and G
(2)
r (level 3 to 6), defined as follows.

G
(1)
r : Q(2)ToB(1) ◦B(1)ToB(2) ◦B(2)ToQ(0), G

(2)
r : Q(0)ToB(1) ◦B(1)ToB(2) ◦B(2)ToQ(1).

For Property (3.1) with respect to q2 and q1, we can obtain the desired ̺2,1 as follows. In G
(1)
r , ̺2,1

starts from 〈q2, 0〉, visits 〈b1, 1〉, 〈b2, 2〉 and then 〈q0, 3〉. In G
(2)
r , ̺2,1 continues from 〈q0, 3〉, visits

〈b1, 4〉, 〈b2, 5〉 and lands at 〈q1, 6〉. For Property (3.1) with respect to q0 and q1, we can obtain the

desired ̺0,1 as follows. In G
(1)
r , ̺0,1 starts from 〈q0, 0〉, passes through G

(1)
r via q0-track until it

reaches 〈q0, 3〉 from where it visits 〈b1, 4〉, 〈b2, 5〉 and lands at 〈q1, 6〉.

Lemma 5 (H-Word). An H-word exists for every H-ranking.

Proof. Let h be an H-ranking. Gh is constructed as follows. Gh comprises n sequential parts

G
(0)
h , . . .G

(n−1)
h , and for each i ∈ [n], G

(i)
h in turn comprises k sequential parts G

(i,1)
h , . . . ,G

(i,k)
h .

To fulfill the requirement with respect to a pair qi ∈ Q (i ∈ [n]) and j ∈ I in Property (3.2), we
select a full path ̺i,j in Gh as follows. The path starts from 〈qi, 0〉 and ends at 〈qi, |Gh|〉. The

path ̺i,j simply passes through, via qi-track, all G
(i′)
h for i′ 6= i. In G

(i)
h , ̺i,j also passes through

G
(i,1)
h , . . . ,G

(i,j−1)
h via qi track until it reaches the beginning of G

(i,j)
h , from where it visits B(h(qi)[j+

1]), . . . , B(h(qi)[k]), G(h(qi)[j]) (in this order), and then enters t-track. The path continues and

stays on t-track till arriving at the second last level of G
(i)
h , and then ending at 〈qi, |G

(i)
h |〉. Formally

we define the following letters.

Id(Q) = { 〈q, q〉 | q ∈ Q},

Id(T ) = { 〈t, t〉},

Q(i)toB(j) = Id(Q) ∪ Id(T ) ∪ { 〈qi, bj〉 }, (i ∈ [n], j ∈ I)

B(i)ToB(j) = Id(Q) ∪ Id(T ) ∪ { 〈bi, bj〉 }, (i, j ∈ I)

B(i)ToG(j) = Id(Q) ∪ Id(T ) ∪ { 〈bi, gj〉 }, (i, j ∈ I)

Q(i)ToG(j) = Id(Q) ∪ Id(T ) ∪ { 〈qi, gj〉 }, (i ∈ [n], j ∈ I)

G(i)ToT = Id(Q) ∪ Id(T ) ∪ { 〈gi, t〉 }, (i ∈ I)

Q(i)To−G(j) = Id(Q) ∪ Id(T ) ∪ { 〈qi, gj〉 } \ { 〈qi, qi〉 }, (i ∈ [n], j ∈ I)

G(i)To−T = Id(Q) ∪ Id(T ) ∪ { 〈gi, t〉 } \ { 〈qi, qi〉 }, (i ∈ I)

TTo−Q(i) = Id(Q) ∪ { 〈t, qi〉 } \ { 〈qi, qi〉 }. (i ∈ [n])

Note that letters of the forms Q(i)To−G(j) or G(i)To−T do not contain horizontal edges 〈qi, qi〉.

These letters are used in G
(i,k)
h so that a full path in G

(i)
h from 〈qi, 0〉 to 〈qi, |G

(i)
h |〉 has to leave

qi-track first and end up at t-track. Letters TTo−Q(i) contain neither the bypass edges 〈t, t〉

nor horizontal edges 〈qi, qi〉. These letters are also used in G
(i,k)
h so that all full paths in G

(i)
h

using t-track end at 〈qi, |G
(i)
h |〉. Formally, Gh = G

(0)
h ◦ G

(2)
h ◦ · · · ◦ G

(n−1)
h , and for each i ∈ [n],

G
(i)
h = G

(i,1)
h ◦ G

(i,2)
h ◦ · · · ◦ G

(i,k)
h , where for each j ∈ [1..k − 1], G

(i,j)
h is

Q(i)ToB(h(qi)[j + 1]) ◦B(h(qi)[j + 1])ToB(h(qi)[j + 2])

◦ · · · ◦B(h(qi)[k − 1])ToB(h(qi)[k]) ◦B(h(qi)[k])ToG(h(qi)[j]) ◦G(h(qi)[j])ToT , (2)
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and finally G
(i,k)
h is

Q(i)To−G(h(qi)[k]) ◦G(h(qi)[k])To
−T ◦ TTo−Q(i). (3)

We verify that Property (3.2) holds for every pair qi ∈ Q (i ∈ [n]) and j ∈ I. First consider

j ∈ [1..k − 1]. By (2), in G
(i,j)
h a full path ̺′i,j exists that starts from 〈qi, 0〉, visits B(h(qi)[j +

1]), . . . , B(h(qi)[k]) and G(h(qi)[j]), and finally ends at 〈t, |G
(i,j)
h |〉. We extend ̺′i,j to a full path

̺i,j in Gh as follows. The path ̺i,j takes qi-track in all G
(i′)
h for i′ 6= i. Inside G

(i)
h , ̺i,j also takes

qi-track in all G
(i,j′)
h for j′ < j. Inside G

(i,j)
h , ̺i,j is just ̺′i,j. In G

(i,j′)
h for j′ > j, ̺i,j takes t-track

till it reaches the second last level of G
(i,k)
h , from where it takes the edge 〈t, qi〉 to the qi at the end

of G
(i)
h . Put all together, for every i ∈ [n], j ∈ [1..k − 1], ̺i,j takes the form

qi → · · · → qi → bh(qi)[j+1] → · · · → bh(qi)[k] → gh(qi)[j] → t → · · · → t → qi → · · · → qi .

The case j = k is similar. By (3), in G
(i,k)
h a full path ̺′i,k exists that starts from 〈qi, 0〉, visits

G(h(qi)[k]), arrives at the t at the second last level of G
(i,k)
h , and finally takes the edge 〈t, qi〉 back

to the qi at the end of G
(i,k)
h (also at the end of G

(i)
h ). We extend ̺′i,k to a full path ̺i,k in Gh in the

same way as before. The only difference is that ̺i,k simply passes through, via qi-track, all G
(i′,j′)
h

for any i′ 6= i or j′ 6= k. Put all together, for every i ∈ [n], ̺i,k takes the form

qi → · · · → qi → gh(qi)[k] → t → qi → · · · → qi .

Note that for any i ∈ [n], j ∈ I, the path ̺i,j has to leave qi-track in G
(i,j)
h to fulfill the requirement

with respect to qi and j, and it has to use t-track and the edge 〈t, qi〉 in G
(i,k)
h to return to qi-track

at the end of G
(i)
h , because the qi-track in G

(i,k)
h is broken at the vertex from where ̺i,k starts to

fulfill the requirement with respect to qi and k in Property (3.2).
We are done with the existence part of Property (3.2). As of the exactness part, we note that

the following facts hold for every i ∈ [n].

1. Vertices qi have only a horizontal outgoing edge in all G
(i′)
h for i′ 6= i.

2. Each G (i,j) (j ∈ I) contains exactly one qi-vertex that has exactly one non-horizontal outgoing

edge. So in G
(i)
h , there are k such qi-vertices in total.

3. The qi-track is broken in G
(i)
h (more precisely, at the beginning of G

(i,k)
h ).

4. Any full path in Gh from 〈qi, 0〉 to 〈qi, |Gh|〉 has to take one of non-horizontal outgoing edges

in G
(i)
h .

5. If a path in G
(i)
h takes a non-horizontal edge to leave qi-track, then the path has to land on

t-track and stay on t-track till returning to the qi at the end of G
(i)
h .

The exactness part then follows. Property (3.3) is immediate as before. Property (3.4) holds due to

the fact that for every i, j ∈ [n], any full path in G
(i)
h that starts from 〈qj , 0〉 ends at 〈qj , |G

(i)
h |〉.

16



Example 3 (H-Word). Let us revisit Example 1. In Figure 1, the H-word Gh consists of three

parts: G
(1)
h (level 6 to level 12), G

(2)
h (level 12 to level 18), and G

(3)
h (level 18 to level 24), defined

as follows: G
(i)
h = G

(i,1)
h ◦ G

(i,2)
h for i ∈ [3] and

G
(0,1)
h = Q(0)ToB(2) ◦B(2)ToG(1) ◦G(1)ToT, G

(0,2)
h = Q(0)To−G(2) ◦G(2)To−T ◦ TTo−Q(0) ,

G
(1,1)
h = Q(1)ToB(2) ◦B(2)ToG(1) ◦G(1)ToT, G

(1,2)
h = Q(1)To−G(2) ◦G(2)To−T ◦ TTo−Q(1) ,

G
(2,1)
h = Q(2)ToB(1) ◦B(1)ToG(2) ◦G(2)ToT, G

(2,2)
h = Q(2)To−G(1) ◦G(1)To−T ◦ TTo−Q(2) .

Let us take a look the paths ̺h and ̺h′ (in G
(1)
h ) defined in Example 1. The path ̺h (marked green

except the last edge) starts at 〈q1, 12〉, visits 〈b2, 13〉 and 〈g1, 14〉, and enters t-track at 〈t, 15〉. It
continues on t-track till reaching 〈t, 17〉, and then takes 〈〈t, 17〉, 〈q1, 18〉〉 (marked blue) to the end.
The path ̺h′ (marked red except the last edge) starts at 〈q1, 12〉, takes q1-track to reach 〈q1, 15〉,
from where it visits 〈g2, 16〉 and then enters t-track at 〈t, 17〉. Same as ̺h, ̺h′ returns to q1-track
via 〈〈t, 17〉, 〈q1, 18〉〉.

Theorem 1 [Q-Words]. A Q-word exists for every Q-ranking.

Proof. By Lemmas 4 and 5, we have Gr and Gh as an R-word and an H-word, respectively. The
desired Q-word G is just Gr ◦ Gh. Properties (3.3) and (3.4) follow immediately because they hold
both in Gr and Gh.

Let ̺ri,i′ be the full path in Gr that satisfies Property (3.1) for qi and qi′ where i, i′ ∈ [n] and

r(qi) > r(qi′), and ̺hi′,k the full path in Gh that satisfies Property (3.2) (with respect to qi′ and

index k). Then ̺ri,i′ ◦ ̺
h
i′,k is the path that Property (3.1) requires for vertex pair qi and qi′ .

Let i ∈ [n] and j ∈ I. Let ̺ri,i be the full qi-track in Gr, and ̺hi,j the full path in Gh that satisfies
Property (3.2) (with respect to vertex qi and index j). Then in G , for each q ∈ Q, we have k full
paths ̺ri,i ◦̺

h
i,j (j ∈ I), which takes care of the existence part of Property (3.2). The exactness part

follows from the exactness part of Property (3.2) for Gh, and the fact that for each i ∈ [n], ̺ri,i is
unique in Gr.
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